You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The past decade has seen dramatic progress in our ability to manipulate and coherently control the motion of atoms. This progress has both fundamental and applied importance. On the one hand, recent experiments are providing new perspectives for the study of quantum phase transitions and highly entangled quantum states. On the other hand, this exquisite control offers the prospect of a new generation of force sensors of unprecedented sensitivity and accuracy.