You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The 3 November 2002 moment magnitude 7.9 Denali fault earthquake generated large, permanent surface displacements in Alaska and large-amplitude surface waves throughout western North America. We find good agreement between strong ground-motion records integrated to displacement and 1-hertz Global Positioning System (GPS) position estimates collected ∼140 kilometers from the earthquake epicenter. One-hertz GPS receivers also detected seismic surface waves 750 to 3800 kilometers from the epicenter, whereas these waves saturated many of the seismicinstruments in the same region. High-frequency GPS increases the dynamic range and frequency bandwidth of ground-motion observations, providing another tool for studying earthquake processes.