You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Tensile experiments of fully dense nanocrystalline structures with a mean grain size of less than 100 nanometers demonstrate a considerable increase in hardness but a remarkable drop in elongation-to-failure, indicating brittle behavior. However, dimple structures are often observed at the fracture surface, indicating some type of ductile fracture mechanism. Guided by large-scale atomistic simulations, we propose that these dimple structures result from local shear planes formed around clustered grains that, because of their particular misorientation, cannot participate in the grain boundary accommodation processes necessary to sustain plastic deformation. This raises the expectation that general high-angle grain boundaries are necessary for good ductility.