You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Insulin resistance is a major hallmark in the development of type II diabetes, which is characterized by the failure of insulin to promote glucose uptake in muscle and to suppress glucose production in liver. The serine-threonine kinase Akt (PKB) is a principal target of insulin signaling that inhibits hepatic glucose output when glucose is available from food. Here we show that TRB3, a mammalian homolog of Drosophila tribbles, functions as a negative modulator of Akt. TRB3 expression is induced in liver under fasting conditions, and TRB3 disrupts insulin signaling by binding directly to Akt and blocking activation of the kinase. Amounts of TRB3 RNA and protein were increased in livers of db/db diabetic mice compared with those in wild-type mice. Hepatic overexpression of TRB3 in amounts comparable to those in db/db mice promoted hyperglycemia and glucose intolerance. Our results suggest that, by interfering with Akt activation, TRB3 contributes to insulin resistance in individuals with susceptibility to type II diabetes.