You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The glycine-alanine repeat domain (GAr) of Epstein-Barr virus–encoded nuclear antigen 1 (EBNA1) prevents major histocompatibility complex (MHC) class I–restricted presentation of EBNA1 epitopes to cytotoxic T cells. This effect has previously been attributed to the ability of GAr to inhibit its own proteasomal degradation. Here we show, both in vitro and in vivo, that GAr also inhibits messenger RNA translation of EBNA1 in cis and that this effect can be distinguished from its effect on proteasomal degradation. Hence, inhibition of messenger RNA translation, but not protein degradation, is essential to prevent antigen presentation on MHC class I molecules. Thus, by minimizing translation of the EBNA1 transcript, cells expressing EBNA1 avoid cytotoxic T cell recognition. At the same time, blocking degradation maintains the EBNA1 expression level.