You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Atomic layer deposition and magnetron sputter deposition were used to synthesize thin-film multilayers of W/Al2O3. With individual layers only a few nanometers thick, the high interface density produced a strong impediment to heat transfer, giving rise to a thermal conductivity of ∼0.6 watts per meter per kelvin. This result suggests that high densities of interfaces between dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal conductivity.