You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Cohesins keep sister chromatids associated from the time of their replication in S phase until the onset of anaphase. In vertebrate cells, two distinct pathways dissociate cohesins, one acts on chromosome arms and the other on centromeres. Here, we describe a third pathway that acts on telomeres. Knockdown of tankyrase 1, a telomeric poly(ADP-ribose) polymerase caused mitotic arrest. Chromosomes aligned normally on the metaphase plate but were unable to segregate. Sister chromatids separated at centromeres and arms but remained associated at telomeres, apparently through proteinaceous bridges. Thus, telomeres may require a unique tankyrase 1–dependent mechanism for sister chromatid resolution before anaphase.