You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The herbicide glyphosate is effectively detoxified by N-acetylation. We screened a collection of microbial isolates and discovered enzymes exhibiting glyphosate N-acetyltransferase (GAT) activity. Kinetic properties of the discovered enzymes were insufficient to confer glyphosate tolerance to transgenic organisms. Eleven iterations of DNA shuffling improved enzyme efficiency by nearly four orders of magnitude from 0.87 mM–1 min–1 to 8320 mM–1 min–1. From the fifth iteration and beyond, GAT enzymes conferred increasing glyphosate tolerance to Escherichia coli, Arabidopsis, tobacco, and maize. Glyphosate acetylation provides an alternative strategy for supporting glyphosate use on crops.