You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The anterior cingulate cortex (ACC) and the related medial wall play a critical role in recruiting cognitive control. Although ACC exhibits selective error and conflict responses, it has been unclear how these develop and become context-specific. With use of a modified stop-signal task, we show from integrated computational neural modeling and neuroimaging studies that ACC learns to predict error likelihood in a given context, even for trials in which there is no error or response conflict. These results support a more general error-likelihood theory of ACC function based on reinforcement learning, of which conflict and error detection are special cases.