You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
To find a target object in a crowded scene, a face in a crowd for example, the visual system might turn the neural representation of each object on and off in a serial fashion, testing each representation against a template of the target item. Alternatively, it might allow the processing of all objects in parallel but bias activity in favor of those neurons that represent critical features of the target, until the target emerges from the background. To test these possibilities, we recorded neurons in area V4 of monkeys freely scanning a complex array to find a target defined by color, shape, or both. Throughout the period of searching, neurons gave enhanced responses and synchronized their activity in the gamma range whenever a preferred stimulus in their receptive field matched a feature of the target, as predicted by parallel models. Neurons also gave enhanced responses to candidate targets that were selected for saccades, or foveation, reflecting a serial component of visual search. Thus, serial and parallel mechanisms of response enhancement and neural synchrony work together to identify objects in a scene. To find a target object in a crowded scene, a face in a crowd for example, the visual system might turn the neural representation of each object on and off in a serial fashion, testing each representation against a template of the target item. Alternatively, it might allow the processing of all objects in parallel but bias activity in favor of those neurons that represent critical features of the target, until the target emerges from the background. To test these possibilities, we recorded neurons in area V4 of monkeys freely scanning a complex array to find a target defined by color, shape, or both. Throughout the period of searching, neurons gave enhanced responses and synchronized their activity in the gamma range whenever a preferred stimulus in their receptive field matched a feature of the target, as predicted by parallel models. Neurons also gave enhanced responses to candidate targets that were selected for saccades, or foveation, reflecting a serial component of visual search. Thus, serial and parallel mechanisms of response enhancement and neural synchrony work together to identify objects in a scene.