You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
We present an atomic-level description of the reaction chemistry of an enzyme-catalyzed reaction dominated by proton tunneling. By solving structures of reaction intermediates at near-atomic resolution, we have identified the reaction pathway for tryptamine oxidation by aromatic amine dehydrogenase. Combining experiment and computer simulation, we show proton transfer occurs predominantly to oxygen O2 of Asp128β in a reaction dominated by tunneling over ∼0.6 angstroms. The role of long-range coupled motions in promoting tunneling is controversial. We show that, in this enzyme system, tunneling is promoted by a short-range motion modulating proton-acceptor distance and no long-range coupled motion is required.