You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Animals sustain the ability to operate after injury by creating qualitatively different compensatory behaviors. Although such robustness would be desirable in engineered systems, most machines fail in the face of unexpected damage. We describe a robot that can recover from such change autonomously, through continuous self-modeling. A four-legged machine uses actuation-sensation relationships to indirectly infer its own structure, and it then uses this self-model to generate forward locomotion. When a leg part is removed, it adapts the self-models, leading to the generation of alternative gaits. This concept may help develop more robust machines and shed light on self-modeling in animals.