You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The ability to switch the coupling between quantum bits (qubits) on and off is essential for implementing many quantum-computing algorithms. We demonstrated such control with two flux qubits coupled together through their mutual inductances and through the dc superconducting quantum interference device (SQUID) that reads out their magnetic flux states. A bias current applied to the SQUID in the zero-voltage state induced a change in the dynamic inductance, reducing the coupling energy controllably to zero and reversing its sign.