You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The connection between a surface's metric and its Gaussian curvature (Gauss theorem) provides the base for a shaping principle of locally growing or shrinking elastic sheets. We constructed thin gel sheets that undergo laterally nonuniform shrinkage. This differential shrinkage prescribes non-Euclidean metrics on the sheets. To minimize their elastic energy, the free sheets form three-dimensional structures that follow the imposed metric. We show how both large-scale buckling and multiscale wrinkling structures appeared, depending on the nature of possible embeddings of the prescribed metrics. We further suggest guidelines for how to generate each type of feature.