DNA Double-Strand Breaks Trigger Genome-Wide Sister-Chromatid Cohesion Through Eco1 (Ctf7)

See allHide authors and affiliations

Science  13 Jul 2007:
Vol. 317, Issue 5835, pp. 245-248
DOI: 10.1126/science.1140637

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

This article has a correction. Please see:


Faithful chromosome segregation and repair of DNA double-strand breaks (DSBs) require cohesin, the protein complex that mediates sister-chromatid cohesion. Cohesion between sister chromatids is thought to be generated only during ongoing DNA replication by an obligate coupling between cohesion establishment factors such as Eco1 (Ctf7) and the replisome. Using budding yeast, we challenge this model by showing that cohesion is generated by an Eco1-dependent but replication-independent mechanism in response to DSBs in G2/M. Furthermore, our studies reveal that Eco1 has two functions: a cohesive activity and a conserved acetyltransferase activity, which triggers the generation of cohesion in response to the DSB and the DNA damage checkpoint. Finally, the DSB-induced cohesion is not limited to broken chromosomes but occurs also on unbroken chromosomes, suggesting that the DNA damage checkpoint through Eco1 provides genome-wide protection of chromosome integrity.

View Full Text

Stay Connected to Science