You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Insect-specific baculoviruses are increasingly used as biological control agents of lepidopteran pests in agriculture and forestry, and they have been previously regarded as robust to resistance development by the insects. However, in more than a dozen cases of field resistance of the codling moth Cydia pomonella to commercially applied C. pomonella granulovirus (CpGV) in German orchards, resistance ratios exceed 1000. The rapid emergence of resistance is facilitated by sex-linkage and concentration-dependent dominance of the major resistance gene and genetic uniformity of the virus. When the gene is fixed, resistance levels approach 100,000-fold. Our findings highlight the need for development of resistance management strategies for baculoviruses.