You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Accurate face recognition is critical for many security applications. Current automatic face-recognition systems are defeated by natural changes in lighting and pose, which often affect face images more profoundly than changes in identity. The only system that can reliably cope with such variability is a human observer who is familiar with the faces concerned. We modeled human familiarity by using image averaging to derive stable face representations from naturally varying photographs. This simple procedure increased the accuracy of an industry standard face-recognition algorithm from 54% to 100%, bringing the robust performance of a familiar human to an automated system.