You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The glass transition is the freezing of a liquid into a solid state without evident structural order. Although glassy materials are well characterized experimentally, the existence of a phase transition into the glass state remains controversial. Here, we present numerical evidence for the existence of a novel first-order dynamical phase transition in atomistic models of structural glass formers. In contrast to equilibrium phase transitions, which occur in configuration space, this transition occurs in trajectory space, and it is controlled by variables that drive the system out of equilibrium. Coexistence is established between an ergodic phase with finite relaxation time and a nonergodic phase of immobile molecular configurations. Thus, we connect the glass transition to a true phase transition, offering the possibility of a unified picture of glassy phenomena.