You are currently viewing the summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Summary
Many processes in our body, like muscle contraction, cell locomotion and division, or transport processes, need force-producing actuators such as molecular motors. In turn, biological systems can also sense mechanical forces. Examples are the sense of touch, hearing, and the strengthening of muscle tissues upon physical exercise. In these cases, force triggers a biochemical signal cascade, but the mechanisms by which forces affect biomolecular conformation and biochemical signaling have long remained elusive. The development of ultrasensitive instruments for nanomanipulation— such as atomic force microscopy and optical and magnetic tweezers—has allowed the effect of forces on protein conformation and function to be probed at the single-molecule level (1–4).