Helical Nanofilament Phases

See allHide authors and affiliations

Science  24 Jul 2009:
Vol. 325, Issue 5939, pp. 456-460
DOI: 10.1126/science.1170027

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Packing Bananas and Boomerangs

Assembling achiral molecules typically generates achiral domains. However, odd things can happen when the molecules are banana-or boomerang-shaped—their cores can twist out of plain to form left- or right-handed helices, which can then pack into chiral domains that will polarize light (see the Perspective by Amabilino). Hough et al. (p. 452) show that if you make the situation even more complex by frustrating the packing of adjacent layers, you can create a material that appears to be macroscopically isotropic with only very local positional and orientational ordering of the molecules but still shows an overall chirality. In a second paper, Hough et al. (p. 456) also show that if you change the chemistry of the molecules to allow for better overall packing, you can create a situation where helical filaments form that also tend to pack in layered structures. However, the frustration between the two types of packing leads to macroscopically chiral and mesoporous structures.


In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral—a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry—the appearance of macroscopic coherence of the filament twist—produces a liquid crystal phase of helically precessing layers.

  • Deceased.

View Full Text

Stay Connected to Science