Chronic Stress Causes Frontostriatal Reorganization and Affects Decision-Making

See allHide authors and affiliations

Science  31 Jul 2009:
Vol. 325, Issue 5940, pp. 621-625
DOI: 10.1126/science.1171203

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Brain Rewiring After Stress

Chronic stress, mainly through the release of corticosteroids, affects executive behavior through sequential structural modulation of brain networks. Stress-induced deficits in spatial reference, working memory, and behavioral flexibility are associated with synaptic and dendritic reorganization in both the hippocampus and the medial prefrontal cortex. However, the effects of chronic stress on action selection strategies are unclear. Dias-Ferreira et al. (p. 621) examined whether chronic stress affects the ability of animals to select the appropriate actions based on the consequences of their choice, and found that rats exposed to chronic unpredictable stress rapidly shift toward using habitual strategies. The shift in behavioral strategies observed in chronically stressed animals corresponded to dramatic and divergent changes in connectivity in the associative and sensorimotor corticostriatal circuits underlying these behaviors.


The ability to shift between different behavioral strategies is necessary for appropriate decision-making. Here, we show that chronic stress biases decision-making strategies, affecting the ability of stressed animals to perform actions on the basis of their consequences. Using two different operant tasks, we revealed that, in making choices, rats subjected to chronic stress became insensitive to changes in outcome value and resistant to changes in action-outcome contingency. Furthermore, chronic stress caused opposing structural changes in the associative and sensorimotor corticostriatal circuits underlying these different behavioral strategies, with atrophy of medial prefrontal cortex and the associative striatum and hypertrophy of the sensorimotor striatum. These data suggest that the relative advantage of circuits coursing through sensorimotor striatum observed after chronic stress leads to a bias in behavioral strategies toward habit.

View Full Text

Stay Connected to Science