You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Nanotubes to Order
To exploit carbon nanotubes fully in electronic applications, one needs to be able to separate or synthesize either all semiconducting or all metallic tubes. However, unbiased synthesis conditions produce a mixture containing two-thirds semiconducting tubes and one-third metallic tubes. Harutyunyan et al. (p. 116) show that altering the carrier gas and temperature, in combination with oxidative and reductive species during the synthesis process modifies the catalyst particles during synthesis, which leads to the selective growth of metallic single-walled carbon nanotubes. Thus, the shape and morphology of the catalyst seeds can be tuned to grow carbon nanotubes of a specific chirality.
Abstract
Single-walled carbon nanotubes can be classified as either metallic or semiconducting, depending on their conductivity, which is determined by their chirality. Existing synthesis methods cannot controllably grow nanotubes with a specific type of conductivity. By varying the noble gas ambient during thermal annealing of the catalyst, and in combination with oxidative and reductive species, we altered the fraction of tubes with metallic conductivity from one-third of the population to a maximum of 91%. In situ transmission electron microscopy studies reveal that this variation leads to differences in both morphology and coarsening behavior of the nanoparticles that we used to nucleate nanotubes. These catalyst rearrangements demonstrate that there are correlations between catalyst morphology and resulting nanotube electronic structure and indicate that chiral-selective growth may be possible.