Climate-Driven Basin-Scale Decadal Oscillations of Oceanic Phytoplankton

See allHide authors and affiliations

Science  27 Nov 2009:
Vol. 326, Issue 5957, pp. 1253-1256
DOI: 10.1126/science.1177012

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Untangling the Web

Chlorophyll-containing phytoplankton is at the core of the marine food web. Martinez et al. (p. 1253) combined satellite data about upper ocean chlorophyll and sea surface temperatures to demonstrate a clear connection between phytoplankton and sea surface temperatures on a multidecadal time scale. Basin-scale ocean dynamic processes such as the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation connect the physical, climate-related variability to changes in phytoplankton distribution and amount. Thus, improving the reliability of forecasts of large-scale ocean dynamics may help to improve predictions of changes in ocean community ecology.


Phytoplankton—the microalgae that populate the upper lit layers of the ocean—fuel the oceanic food web and affect oceanic and atmospheric carbon dioxide levels through photosynthetic carbon fixation. Here, we show that multidecadal changes in global phytoplankton abundances are related to basin-scale oscillations of the physical ocean, specifically the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. This relationship is revealed in ~20 years of satellite observations of chlorophyll and sea surface temperature. Interaction between the main pycnocline and the upper ocean seasonal mixed layer is one mechanism behind this correlation. Our findings provide a context for the interpretation of contemporary changes in global phytoplankton and should improve predictions of their future evolution with climate change.

View Full Text

Stay Connected to Science