You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Few infectious diseases are entirely human-specific: Most human pathogens also circulate in animals or else originated in nonhuman hosts. Influenza, plague, and trypanosomiasis are classic examples of zoonotic infections that transmit from animals to humans. The multihost ecology of zoonoses leads to complex dynamics, and analytical tools, such as mathematical modeling, are vital to the development of effective control policies and research agendas. Much attention has focused on modeling pathogens with simpler life cycles and immediate global urgency, such as influenza and severe acute respiratory syndrome. Meanwhile, vector-transmitted, chronic, and protozoan infections have been neglected, as have crucial processes such as cross-species transmission. Progress in understanding and combating zoonoses requires a new generation of models that addresses a broader set of pathogen life histories and integrates across host species and scientific disciplines.
-
↵* These authors (listed alphabetically) contributed equally to this work.