How the Shape of an H-Bonded Network Controls Proton-Coupled Water Activation in HONO Formation

See allHide authors and affiliations

Science  15 Jan 2010:
Vol. 327, Issue 5963, pp. 308-312
DOI: 10.1126/science.1177118

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

It's the Network

Numerous reactions of small molecules and ions in the atmosphere take place in the confines of watery aerosols. Relph et al. (p. 308; see the Perspective by Siefermann and Abel) explored the specific influence of a water cluster's geometry on the transformation of solvated nitrosonium (NO+) to nitrous acid (HONO). The reaction involves (O)N–O(H) bond formation with one water molecule, concomitant with proton transfer to additional, surrounding water molecules. Vibrational spectroscopy and theoretical simulations suggest that certain arrangements of the surrounding water network are much more effective than others in accommodating this charge transfer, and thus facilitating the reaction.


Many chemical reactions in atmospheric aerosols and bulk aqueous environments are influenced by the surrounding solvation shell, but the precise molecular interactions underlying such effects have rarely been elucidated. We exploited recent advances in isomer-specific cluster vibrational spectroscopy to explore the fundamental relation between the hydrogen (H)–bonding arrangement of a set of ion-solvating water molecules and the chemical activity of this ensemble. We find that the extent to which the nitrosonium ion (NO+)and water form nitrous acid (HONO) and a hydrated proton cluster in the critical trihydrate depends sensitively on the geometrical arrangement of the water molecules in the network. Theoretical analysis of these data details the role of the water network in promoting charge delocalization.

View Full Text

Stay Connected to Science