The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML

See allHide authors and affiliations

Science  26 Mar 2010:
Vol. 327, Issue 5973, pp. 1650-1653
DOI: 10.1126/science.1186624

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A Pathway to Leukemia

Leukemia is initiated and maintained by a small number of self-renewing cells called leukemia stem cells (LSCs), which share properties with hematopoietic stem cells (HSCs), the self-renewing cells that produce healthy blood cells. Wang et al. (p. 1650) studied mouse models of acute myelogenous leukemia (AML), a disease that is often refractory to existing therapies. Activation of the Wnt/β-catenin signaling pathway was required for efficient oncogene-mediated conversion of HSCs into LSCs. This pathway is among the most well studied signaling pathways in cell biology, setting the stage for testing of β-catenin signaling antagonists in preclinical models of AML.


Leukemia stem cells (LSCs) are capable of limitless self-renewal and are responsible for the maintenance of leukemia. Because selective eradication of LSCs could offer substantial therapeutic benefit, there is interest in identifying the signaling pathways that control their development. We studied LSCs in mouse models of acute myelogenous leukemia (AML) induced either by coexpression of the Hoxa9 and Meis1a oncogenes or by the fusion oncoprotein MLL-AF9. We show that the Wnt/β-catenin signaling pathway is required for self-renewal of LSCs that are derived from either hematopoietic stem cells (HSC) or more differentiated granulocyte-macrophage progenitors (GMP). Because the Wnt/β-catenin pathway is normally active in HSCs but not in GMP, these results suggest that reactivation of β-catenin signaling is required for the transformation of progenitor cells by certain oncogenes. β-catenin is not absolutely required for self-renewal of adult HSCs; thus, targeting the Wnt/β-catenin pathway may represent a new therapeutic opportunity in AML.

View Full Text