You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Of Monsoons and Megadroughts
The Asian monsoon is the weather system that has the greatest effect on the greatest number of people in the world. Naturally then, knowing better how climate change might affect the monsoon is tremendously important. One obstacle that prevents a better understanding of future behavior is a poor knowledge of its past. Cook et al. (p. 486; see the Perspective by Wahl and Morrill) help to fill this gap with a 700-year reconstruction of the monsoon from tree-ring data obtained throughout Asia. The reconstruction chronicles monsoon failures and megadroughts, as well as patterns of precipitation, and can thus be compared with other relevant climate records to allow links with sea-surface temperatures to be better understood.
Abstract
The Asian monsoon system affects more than half of humanity worldwide, yet the dynamical processes that govern its complex spatiotemporal variability are not sufficiently understood to model and predict its behavior, due in part to inadequate long-term climate observations. Here we present the Monsoon Asia Drought Atlas (MADA), a seasonally resolved gridded spatial reconstruction of Asian monsoon drought and pluvials over the past millennium, derived from a network of tree-ring chronologies. MADA provides the spatiotemporal details of known historic monsoon failures and reveals the occurrence, severity, and fingerprint of previously unknown monsoon megadroughts and their close linkages to large-scale patterns of tropical Indo-Pacific sea surface temperatures. MADA thus provides a long-term context for recent monsoon variability that is critically needed for climate modeling, prediction, and attribution.