You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Reducing emissions from deforestation and degradation (REDD) may curb carbon emissions, but the consequences for fire hazard are poorly understood. By analyzing satellite-derived deforestation and fire data from the Brazilian Amazon, we show that fire occurrence has increased in 59% of the area that has experienced reduced deforestation rates. Differences in fire frequencies across two land-use gradients reveal that fire-free land-management can substantially reduce fire incidence by as much as 69%. If sustainable fire-free land-management of deforested areas is not adopted in the REDD mechanism, then the carbon savings achieved by avoiding deforestation may be partially negated by increased emissions from fires.