You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
The Space in Your Head
Space, and events associated with places and spaces, are represented in the brain by a circuitry made of place cells, head direction cells, grid cells, and border cells. These cell types form a collective dynamic representation of our position as we move through the environment. How this representation is formed has remained a mystery. Is it acquired, or are we born with the ability to represent external space (see the Perspective by Palmer and Lynch)? Langston et al. (p. 1576) and Wills et al. (p. 1573) investigated the early development of spatial activity in the hippocampal formation and the entorhinal cortex of rat pups when they first began to explore their environment. Rudiments of place cells, head direction cells, and grid cells already existed when the pups made their first movements out of the nest. A neural representation of external space at this early time points to strong innate components for perception of space. These findings provide experimental support for Kant's 200-year-old concept of space as an a priori faculty of the mind.
Abstract
Orienting in large-scale space depends on the interaction of environmental experience and preconfigured, possibly innate, constructs. Place, head-direction, and grid cells in the hippocampal formation provide allocentric representations of space. Here we show how these cognitive representations emerge and develop as rat pups first begin to explore their environment. Directional, locational, and rhythmic organization of firing are present during initial exploration, including adultlike directional firing. The stability and precision of place cell firing continue to develop throughout juvenility. Stable grid cell firing appears later but matures rapidly to adult levels. Our results demonstrate the presence of three neuronal representations of space before extensive experience and show how they develop with age.