You are currently viewing the summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Summary
Each year, ocean sediments produce a quantity of methane equivalent to about half of the methane emitted to the atmosphere from all natural sources (1). Very little of the methane produced below the sea floor, however, reaches the ocean or the atmosphere; most is consumed by anaerobic microorganisms as it diffuses up through oxygen-poor (anoxic) sediments. Researchers recognized this process, known as anaerobic methane oxidation (AMO), nearly 35 years ago (2), but it remains poorly understood. Investigators have not been able to firmly establish the reaction mechanism, fully understand the factors that control oxidation rates, or isolate the responsible organisms. This represents a gaping hole in our understanding of one of Earth's primary sinks for methane. Recent studies of a rare but intriguing sedimentary environment–sea-floor seeps of methane-rich fluids–have provided new insights into the microorganisms that inhabit methane-rich sediments, but raised new questions regarding reaction mechanisms.