Report

Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles

See allHide authors and affiliations

Science  30 Jul 2010:
Vol. 329, Issue 5991, pp. 544-547
DOI: 10.1126/science.1191700

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Straining Graphene's Electronic States

The conduction electrons in graphene, single sheets of graphite, can have very high mobilities. Under the influence of an applied magnetic field, a series of energy steps, or Landau levels, can be observed that correspond to the conduction electrons traveling in cyclotron orbits. Recent theoretical work has indicated that if graphene layers are strained, the strain field creates a pseudomagnetic field that should also lead to observable Landau levels. Levy et al. (p. 544) used scanning tunneling microscopy to probe the energy levels of graphene grown on a platinum surface, which forms highly strained “nanobubbles.” The strain is equivalent to applying very high magnetic fields (in excess of 300 tesla). Thus, the electronic properties of graphene can indeed be modified using applied strain.