In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor

See allHide authors and affiliations

Science  13 Aug 2010:
Vol. 329, Issue 5993, pp. 824-826
DOI: 10.1126/science.1190482

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

De-Twinning a Superconductor

Insight into the mechanism of electrical transport in a solid can often be gained by measuring its resistivity along different spatial directions. However, iron-based superconductors form numerous twin boundaries where two different orientations of a crystal meet, and so the measured resistivity along any in-plane direction will be averaged over these orientations. Chu et al. (p. 824) were able to “de-twin” the compound Ba(Fe1−xCox)2As2, enabling unambiguous measurements of its normal-state resistivity along the in-plane lattice axes. Differences were observed in the resistivity values along the two axes, which suggests that the breaking of the symmetry of the lattice and electron subsystems occur simultaneously.


High-temperature superconductivity often emerges in the proximity of a symmetry-breaking ground state. For superconducting iron arsenides, in addition to the antiferromagnetic ground state, a small structural distortion breaks the crystal’s C4 rotational symmetry in the underdoped part of the phase diagram. We reveal that the representative iron arsenide Ba(Fe1−xCox)2As2 develops a large electronic anisotropy at this transition via measurements of the in-plane resistivity of detwinned single crystals, with the resistivity along the shorter b axis ρb being greater than ρa. The anisotropy reaches a maximum value of ~2 for compositions in the neighborhood of the beginning of the superconducting dome. For temperatures well above the structural transition, uniaxial stress induces a resistivity anisotropy, indicating a substantial nematic susceptibility.

View Full Text