Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering

See allHide authors and affiliations

Science  03 Dec 2010:
Vol. 330, Issue 6009, pp. 1368-1370
DOI: 10.1126/science.1197236

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Skin-Deep Raman Spectroscopy

Raman spectroscopy allows for molecular identification via vibrational spectra at optical wavelengths. However, if the optical signal is scattered, as occurs when trying to image tissue, the signal becomes very weak, and it becomes difficult to image a sample with high time resolution. Saar et al. (p. 1368) now show that by improving the optics and electronics of the acquisition of the backscattered signal, stimulated Raman scattering spectroscopy can be performed at video rates on human skin, which should enable label-free studies of tissues and, for example, the tracking of the delivery of a drug.


Optical imaging in vivo with molecular specificity is important in biomedicine because of its high spatial resolution and sensitivity compared with magnetic resonance imaging. Stimulated Raman scattering (SRS) microscopy allows highly sensitive optical imaging based on vibrational spectroscopy without adding toxic or perturbative labels. However, SRS imaging in living animals and humans has not been feasible because light cannot be collected through thick tissues, and motion-blur arises from slow imaging based on backscattered light. In this work, we enable in vivo SRS imaging by substantially enhancing the collection of the backscattered signal and increasing the imaging speed by three orders of magnitude to video rate. This approach allows label-free in vivo imaging of water, lipid, and protein in skin and mapping of penetration pathways of topically applied drugs in mice and humans.

View Full Text

Stay Connected to Science