You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Inland waters (lakes, reservoirs, streams, and rivers) are often substantial methane (CH4) sources in the terrestrial landscape. They are, however, not yet well integrated in global greenhouse gas (GHG) budgets. Data from 474 freshwater ecosystems and the most recent global water area estimates indicate that freshwaters emit at least 103 teragrams of CH4 year−1, corresponding to 0.65 petagrams of C as carbon dioxide (CO2) equivalents year−1, offsetting 25% of the estimated land carbon sink. Thus, the continental GHG sink may be considerably overestimated, and freshwaters need to be recognized as important in the global carbon cycle.