You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Clusters in the form of aggregates of a small number of elemental units display structural, thermodynamic, and dynamic properties different from those of bulk materials. We studied the kinetic pathways of self-assembly of “Janus spheres” with hemispherical hydrophobic attraction and found key differences from those characteristic of molecular amphiphiles. Experimental visualization combined with theory and molecular dynamics simulation shows that small, kinetically favored isomers fuse, before they equilibrate, into fibrillar triple helices with at most six nearest neighbors per particle. The time scales of colloidal rearrangement combined with the directional interactions resulting from Janus geometry make this a prototypical system to elucidate, on a mechanistic level and with single-particle kinetic resolution, how chemical anisotropy and reaction kinetics coordinate to generate highly ordered structures.