Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock

See allHide authors and affiliations

Science  25 Feb 2011:
Vol. 331, Issue 6020, pp. 1043-1046
DOI: 10.1126/science.1196442

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Keeping Time

Optical lattice clocks are comprised of atoms placed in an optical lattice formed by opposing laser beams and can be more precise than traditional microwave atomic clocks because of the higher frequency at which they operate, and the number of atoms available for interrogation. However, interactions between the atoms may lead to shifts in the frequency of the clock transition, usually proportional to the atomic density. Swallows et al. (p. 1043, published online 3 February) demonstrate an opposite and unexpected effect of interactions: For sufficiently strongly interacting systems, the frequency shift is suppressed. Indeed, in a strontium-based fermionic lattice clock, the shift and its associated spread were reduced by an order of magnitude.


Optical lattice clocks with extremely stable frequency are possible when many atoms are interrogated simultaneously, but this precision may come at the cost of systematic inaccuracy resulting from atomic interactions. Density-dependent frequency shifts can occur even in a clock that uses fermionic atoms if they are subject to inhomogeneous optical excitation. However, sufficiently strong interactions can suppress collisional shifts in lattice sites containing more than one atom. We demonstrated the effectiveness of this approach with a strontium lattice clock by reducing both the collisional frequency shift and its uncertainty to the level of 10−17. This result eliminates the compromise between precision and accuracy in a many-particle system; both will continue to improve as the number of particles increases.

View Full Text

Stay Connected to Science