You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Glass lacks the long-range periodic order that characterizes a crystal. In the Ce75Al25 metallic glass (MG), however, we discovered a long-range topological order corresponding to a single crystal of indefinite length. Structural examinations confirm that the MG is truly amorphous, isotropic, and unstrained, yet under 25 gigapascals hydrostatic pressures, every segment of a centimeter-length MG ribbon devitrifies independently into a face-centered cubic (fcc) crystal with the identical orientation. By using molecular dynamics simulations and synchrotron x-ray techniques, we elucidate that the mismatch between the large Ce and small Al atoms frustrates the crystallization and causes amorphization, but a long-range fcc topological order still exists. Pressure induces electronic transition in Ce, which eliminates the mismatch and manifests the topological order by the formation of a single crystal.