You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Reduction of acids to molecular hydrogen as a means of storing energy is catalyzed by platinum, but its low abundance and high cost are problematic. Precisely controlled delivery of protons is critical in hydrogenase enzymes in nature that catalyze hydrogen (H2) production using earth-abundant metals (iron and nickel). Here, we report that a synthetic nickel complex, [Ni(PPh2NPh)2](BF4)2, (PPh2NPh = 1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane), catalyzes the production of H2 using protonated dimethylformamide as the proton source, with turnover frequencies of 33,000 per second (s−1) in dry acetonitrile and 106,000 s−1 in the presence of 1.2 M of water, at a potential of –1.13 volt (versus the ferrocenium/ferrocene couple). The mechanistic implications of these remarkably fast catalysts point to a key role of pendant amines that function as proton relays.
-
↵* Sabbatical visitor at Pacific Northwest National Laboratory, 2010–2011.