You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The stable isotope record of marine carbon indicates that the Proterozoic Eon began and ended with extreme fluctuations in the carbon cycle. In both the Paleoproterozoic [2500 to 1600 million years ago (Ma)] and Neoproterozoic (1000 to 542 Ma), extended intervals of anomalously high carbon isotope ratios (δ13C) indicate high rates of organic matter burial and release of oxygen to the atmosphere; in the Neoproterozoic, the high δ13C interval was punctuated by abrupt swings to low δ13C, indicating massive oxidation of organic matter. We report a Paleoproterozoic negative δ13C excursion that is similar in magnitude and apparent duration to the Neoproterozoic anomaly. This Shunga-Francevillian anomaly may reflect intense oxidative weathering of rocks as the result of the initial establishment of an oxygen-rich atmosphere.