You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Flashy Feathers
Feather colors play key roles in the lives of birds, functioning in everything from camouflage, to thermoregulation, to sexual signaling. Much recent research has revealed that some dinosaurs also had feathers, and examination of feather components in fossil and preserved feathers has begun to reveal how feather color may have played a role in the lives of these dinosaurs. Li et al. (p. 1215) compared the characteristics of the melanosomes of the paravian dinosaur Microraptor to those found in extant birds, which suggest that its feathers were black and iridescent. The existence of this subtle color reflectance, together with morphological aspects of the feathered tail, suggests an important role for signaling in the early evolution of feathers.
Abstract
Iridescent feather colors involved in displays of many extant birds are produced by nanoscale arrays of melanin-containing organelles (melanosomes). Data relevant to the evolution of these colors and the properties of melanosomes involved in their generation have been limited. A data set sampling variables of extant avian melanosomes reveals that those forming most iridescent arrays are distinctly narrow. Quantitative comparison of these data with melanosome imprints densely sampled from a previously unknown specimen of the Early Cretaceous feathered Microraptor predicts that its plumage was predominantly iridescent. The capacity for simple iridescent arrays is thus minimally inferred in paravian dinosaurs. This finding and estimation of Microraptor feathering consistent with an ornamental function for the tail suggest a centrality for signaling in early evolution of plumage and feather color.