Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota

See allHide authors and affiliations

Science  08 Jun 2012:
Vol. 336, Issue 6086, pp. 1325-1329
DOI: 10.1126/science.1222195

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Establishing an Enteric Infection

Complex and highly regulated interactions are required to keep the peace between the bacteria that reside in our gut and the immune system. How do pathogenic bacteria, such as the strains of Escherichia coli that cause gastroenteritis, get a foothold to establish an infection, and what is the role of resident bacteria in this process? Kamada et al. (p. 1325, published online 10 May; see the Perspective by Sperandio) infected mice orally with Citrobacter rodentium and found that mice with normal commensal microflora, which were better able to contain the infection than mice that lacked the commensals, which were not able to clear the infection.


The virulence mechanisms that allow pathogens to colonize the intestine remain unclear. Here, we show that germ-free animals are unable to eradicate Citrobacter rodentium, a model for human infections with attaching and effacing bacteria. Early in infection, virulence genes were expressed and required for pathogen growth in conventionally raised mice but not germ-free mice. Virulence gene expression was down-regulated during the late phase of infection, which led to relocation of the pathogen to the intestinal lumen where it was outcompeted by commensals. The ability of commensals to outcompete C. rodentium was determined, at least in part, by the capacity of the pathogen and commensals to grow on structurally similar carbohydrates. Thus, pathogen colonization is controlled by bacterial virulence and through competition with metabolically related commensals.

View Full Text

Stay Connected to Science