You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Plants possess multifunctional and rapidly evolving specialized metabolic enzymes. Many metabolites do not appear to be immediately required for survival; nonetheless, many may contribute to maintaining population fitness in fluctuating and geographically dispersed environments. Others may serve no contemporary function but are produced inevitably as minor products by single enzymes with varying levels of catalytic promiscuity. The dominance of the terrestrial realm by plants likely mirrored expansion of specialized metabolism originating from primary metabolic pathways. Compared with their evolutionarily constrained counterparts in primary metabolism, specialized metabolic enzymes may be more tolerant to mutations normally considered destabilizing to protein structure and function. If this is true, permissiveness may partially explain the pronounced chemodiversity of terrestrial plants.