You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Nanostructured metals are generally unstable; their grains grow rapidly even at low temperatures, rendering them difficult to process and often unsuitable for usage. Alloying has been found to improve stability, but only in a few empirically discovered systems. We have developed a theoretical framework with which stable nanostructured alloys can be designed. A nanostructure stability map based on a thermodynamic model is applied to design stable nanostructured tungsten alloys. We identify a candidate alloy, W-Ti, and demonstrate substantially enhanced stability for the high-temperature, long-duration conditions amenable to powder-route production of bulk nanostructured tungsten. This nanostructured alloy adopts a heterogeneous chemical distribution that is anticipated by the present theoretical framework but unexpected on the basis of conventional bulk thermodynamics.