You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
What Kitty Shares with Kings
Although long-studied, the underlying basis of mammalian coat patterns remains unclear. By studying a large number of cat species and varieties, Kaelin et al. (p. 1536) identified two genes, Taqpep and Edn3, as critical factors in the development of feline pigment patterns. Mutations in Taqpep are responsible for the blotched tabby pattern in domestic cats and the unusual coat of wild king cheetahs. Gene expression patterns in cat and cheetah skin suggest that Edn3 is a likely regulator of felid hair color. The findings support a common model for coat and pigment pattern formation in domestic and wild cats.
Abstract
Color markings among felid species display both a remarkable diversity and a common underlying periodicity. A similar range of patterns in domestic cats suggests a conserved mechanism whose appearance can be altered by selection. We identified the gene responsible for tabby pattern variation in domestic cats as Transmembrane aminopeptidase Q (Taqpep), which encodes a membrane-bound metalloprotease. Analyzing 31 other felid species, we identified Taqpep as the cause of the rare king cheetah phenotype, in which spots coalesce into blotches and stripes. Histologic, genomic expression, and transgenic mouse studies indicate that paracrine expression of Endothelin3 (Edn3) coordinates localized color differences. We propose a two-stage model in which Taqpep helps to establish a periodic pre-pattern during skin development that is later implemented by differential expression of Edn3.