Quantifying the Impact of Human Mobility on Malaria

See allHide authors and affiliations

Science  12 Oct 2012:
Vol. 338, Issue 6104, pp. 267-270
DOI: 10.1126/science.1223467

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Mobile Phone “Hot Spots”

An obstacle to developing effective national malaria control programs is a lack of understanding of human movements, which are an important component of disease transmission. As mobile phones have become increasingly ubiquitous, it is now possible to collect individual-level, longitudinal data on human movements on a massive scale. Wesolowski et al. (p. 267) analyzed mobile phone call data records representing the travel patterns of 15 million mobile phone owners in Kenya over the course of a year. This was combined with a detailed malaria risk map, to estimate malaria parasite movements across the country that could be caused by human movement. This information enabled detailed analysis of parasite sources and sinks between hundreds of local settlements. Estimates were compared with hospital data from Nairobi to show that local pockets of transmission likely occur around the periphery of Nairobi, accounting for locally acquired cases, contrary to the accepted idea that there is no transmission in the capital.


Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here, we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies importation routes that contribute to malaria epidemiology on regional spatial scales.

View Full Text

Stay Connected to Science