You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Channels from DNA
Artificial transmembrane channels are of interest for applications, such as sensing and modifying cell signaling. Langecker et al. (p. 932; see the Perspective by Strano) used α-hemolysin as a model for creating a nanostructure with DNA origami that, when inserted into a lipid bilayer membrane, acted as a membrane channel. Ion channel responses were similar to those measured for natural ion channels, and channels that protruded further into the membrane exhibited greater gating responses. The channels were used to detect single-DNA molecules.
Abstract
We created nanometer-scale transmembrane channels in lipid bilayers by means of self-assembled DNA-based nanostructures. Scaffolded DNA origami was used to create a stem that penetrated and spanned a lipid membrane, as well as a barrel-shaped cap that adhered to the membrane, in part via 26 cholesterol moieties. In single-channel electrophysiological measurements, we found similarities to the response of natural ion channels, such as conductances on the order of 1 nanosiemens and channel gating. More pronounced gating was seen for mutations in which a single DNA strand of the stem protruded into the channel. Single-molecule translocation experiments show that the synthetic channels can be used to discriminate single DNA molecules.