Orbitofrontal Cortex Supports Behavior and Learning Using Inferred But Not Cached Values

See allHide authors and affiliations

Science  16 Nov 2012:
Vol. 338, Issue 6109, pp. 953-956
DOI: 10.1126/science.1227489

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Experience Versus Models

There is an ongoing debate over what the orbitofrontal cortex contributes to behavior, learning, and decision-making. Jones et al. (p. 953) found that the orbitofrontal cortex was important for value-based computations when value must be inferred from an associative model of the task but not when value estimates based on previous experience are sufficient. This result calls into question the assumption that this region simply signals economic value. However, it would be consistent with a concept of the orbitofrontal cortex as being important for constructing model-based representations of the world that are orthogonal to value.


Computational and learning theory models propose that behavioral control reflects value that is both cached (computed and stored during previous experience) and inferred (estimated on the fly on the basis of knowledge of the causal structure of the environment). The latter is thought to depend on the orbitofrontal cortex. Yet some accounts propose that the orbitofrontal cortex contributes to behavior by signaling “economic” value, regardless of the associative basis of the information. We found that the orbitofrontal cortex is critical for both value-based behavior and learning when value must be inferred but not when a cached value is sufficient. The orbitofrontal cortex is thus fundamental for accessing model-based representations of the environment to compute value rather than for signaling value per se.

View Full Text

Stay Connected to Science

Editor's Blog