Export of Algal Biomass from the Melting Arctic Sea Ice

See allHide authors and affiliations

Science  22 Mar 2013:
Vol. 339, Issue 6126, pp. 1430-1432
DOI: 10.1126/science.1231346

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Diatom Fall

2012 saw the greatest Arctic ice minimum ever recorded. This allowed unprecedented access for research vessels deep into the Arctic Ocean to make high-latitude observations of ice melt and associated phenomena. From the RV Polarstern between 84° to 89° North, Boetius et al. (p. 1430, published online 14 February; see the cover) observed large-scale algal aggregates of the diatom Melosira arctica hanging beneath multiyear and seasonal ice across a wide range of latitudes. The strands of algae were readily dislodged and formed aggregates on the seabed up to 4400 meters below, where the algae are consumed by large mobile invertebrates, such as sea cucumbers and brittle stars. Although Nansen observed sub-ice algae in the Arctic 100 years ago, the extent of this bloom phenomenon was unknown. The dynamics of such blooms must impinge on global carbon budgets, but how the dynamics will change as ice melt becomes more extensive remains unclear.


In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.

    View Full Text

    Stay Connected to Science