You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Reef Repair
Coral reefs suffer mass mortality because of coral bleaching, disease, and tropical storms, but we know much more about when, where, and how rapidly these ecosystems have collapsed than we do about their recovery. Gilmour et al. (p. 69; see the Perspective by Polidoro and Carpenter) studied a highly isolated coral reef before and after a climate-induced mass mortality event that killed 70 to 90% of the reef corals. The initial recovery of coral cover involved growth and survival of remnant colonies, which was followed by increases in larval recruitment. Thus, in the absence of chronic disturbance, even isolated reefs can recover from catastrophic disturbance.
Abstract
Coral reef recovery from major disturbance is hypothesized to depend on the arrival of propagules from nearby undisturbed reefs. Therefore, reefs isolated by distance or current patterns are thought to be highly vulnerable to catastrophic disturbance. We found that on an isolated reef system in north Western Australia, coral cover increased from 9% to 44% within 12 years of a coral bleaching event, despite a 94% reduction in larval supply for 6 years after the bleaching. The initial increase in coral cover was the result of high rates of growth and survival of remnant colonies, followed by a rapid increase in juvenile recruitment as colonies matured. We show that isolated reefs can recover from major disturbance, and that the benefits of their isolation from chronic anthropogenic pressures can outweigh the costs of limited connectivity.