Mechanism-Based Covalent Neuraminidase Inhibitors with Broad-Spectrum Influenza Antiviral Activity

See allHide authors and affiliations

Science  05 Apr 2013:
Vol. 340, Issue 6128, pp. 71-75
DOI: 10.1126/science.1232552

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Adding to the Antiviral Arsenal

The envelope of influenza virus contains two immunodominant glycoproteins: hemagglutinin and neuraminidase (NA). Existing antivirals like zanamivir (Relenza) and oseltamivir (Tamiflu) target NA; however, the development of drug resistance is a problem. Kim et al. (p. 71, published online 21 February) now report a different class of NA inhibitors. NA catalyzes the removal of sialic acids from the surface of host cells to initiate entry. Discovery of a NA–sialic acid intermediate led to the production of sialic acid analogs that bound covalently to NA and inhibited its enzymatic activity. These compounds showed activity against a wide variety of influenza strains, inhibited viral replication in cell culture, and were able to protect mice against influenza infection. Protection of mice was equivalent to protection seen from zanamivir. Moreover, the compounds showed activity against drug-resistant strains in vitro. These compounds represent a potentially useful addition to the arsenal of antivirals used to treat influenza infection.


Influenza antiviral agents play important roles in modulating disease severity and in controlling pandemics while vaccines are prepared, but the development of resistance to agents like the commonly used neuraminidase inhibitor oseltamivir may limit their future utility. We report here on a new class of specific, mechanism-based anti-influenza drugs that function through the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme, and we confirm this mode of action with structural and mechanistic studies. These compounds function in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro. The similarity of their structure to that of the natural substrate and their mechanism-based design make these attractive antiviral candidates.

View Full Text

Stay Connected to Science